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Abstract

A new\ very simple approximate interconversion method is proposed and veri_ed by examples[ This
technique\ employing the slope of the source function on logarithmic scales\ is found to substantially enhance
the accuracy compared to existing approximate methods[ The new method is based on the characteristic
mathematical properties of the narrow!band weight functions involved in the interrelationships between
broad!band material functions[ With the material functions represented locally by a power law\ they are
interrelated in terms of adjustment factors expressed through the local\ logÐlog slope of the given "source#
function[ A number of existing approximate interconversion methods are also tested and compared with the
new method[ In Part I "Park and Schapery\ 0887#\ an e.cient numerical interconversion method\ based on
a Prony "exponential# series representation of both the source and target functions\ was presented ^ such a
series representation is not needed here[ The new method\ when applied to the prediction of broad!band
time!dependent functions from Laplace or Fourier transforms\ is an approximate method of transform
inversion that is applicable to functions which are not necessarily viscoelastic material functions[ Þ Elsevier
Science Ltd[ All rights reserved[

Keywords] Viscoelasticity ^ Interconversion ^ Material functions ^ Power!law representation ^ Transform inversion

0[ Introduction

There are many times that one wants to predict one viscoelastic material function from another
or to invert a Laplace or Fourier transform in a variety of problems[ For example\ it may be of
interest to determine a transient material function\ like relaxation modulus or creep compliance at
very small times[ It is often experimentally advantageous to get this from the corresponding
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complex material function in the frequency domain "obtained through a test with a steady!
state sinusoidal input# rather than determining the transient function directly from a short!time
relaxation or creep test[ In some applications one may need the creep compliance when only the
relaxation modulus is available or vice versa[ Analysis of a viscoelastic continuum using the elastic!
viscoelastic correspondence principle is based on the use of Laplace or Fourier transforms of
related material functions to derive transformed response functions\ which then requires transform
inversion to predict time!dependent response[

In Part I "Park and Schapery\ 0887#\ we presented and tested a numerical method of inter!
conversion between modulus and compliance functions when the given "source# and predicted
"target# functions are based on a Prony "exponential# series representation of transient functions[
It was shown that the determination of a target function simply reduced to solving a system of
linear algebraic equations for unknown Prony series coe.cients\ without the need to derive the
target time constants[ For ease of reference later in this paper\ expressions in terms of Prony series
constants for time and frequency dependent moduli are summarized in Appendix A[

In this paper we concentrate on approximate analytical interrelationships[ It should be emphas!
ized that\ although the material characterization used here in the examples starts with a Prony
series\ such a representation is not needed[ Indeed\ it would be su.cient to start with numerical
values of modulus or compliance obtained directly from an experiment ^ some smoothing of the
data may be needed because the slope in logarithmic coordinates is required[

Some existing methods are reviewed _rst[ Then the narrow band property of the weight functions
involved in various interrelationships between the material function is discussed[ Based on these
properties and the broad band representation of actual material functions\ a set of new\ easily
applied\ approximate analytical interconversions are developed and illustrated using a set of
experimental data from polymethyl methacrylate "PMMA#[ The new models are compared with
existing models in their simplicity\ accuracy\ and limitations[

1[ Some existing approximate interconversion methods

A large number of approximate\ analytical interconversion methods with di}erent bases and
accuracies have been proposed by others "e[g[\ see Tschoegl\ 0878#[ Among these\ a few methods
will be selected and discussed\ and then their performances compared with our new method[

Schapery "0851# presented two approximate methods of Laplace transform inversion\ the direct
method and the collocation method[ As a special application of the direct method\ the uniaxial
relaxation modulus E"t# and the operational modulus "de_ned as the Carson transform or the s!
multiplied Laplace transform of the relaxation modulus#\

E	"s# 0 s g
�

9

E"t# e−st dt � s g
�

−�

E"t#t e−st d"ln t# "0#

have the following approximate interconversion properties ]

E"t# 3 E	"s# =s�"a:t# or E	"s# 3 E"t# =t�"a:s# "1#

where E	"s# 0 sEÞ"s# and EÞ"s# is the Laplace transform of the function E"t# ^ throughout this paper
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ln"=# and log"=# denote the logarithms using base e and base 09\ respectively[ Also\ a � e−C where
C � 9[4661 [ [ [ is Euler|s constant\ resulting in a 3 9[45[

The relationship "1# yields good results whenever the derivative of E"t# with respect to log t is a
slowly varying function of log t[ Schapery "0851# also proposed an improved relationship for the
case in which the derivative of log E"t# with respect to log t is a slowly varying function of log t\

E"t# 3 E	"s# =s�"b:t# or E	"s# 3 E"t# =t�"b:s# "2#

where b � "G"0−n##−"0:n#[ Also G"=# denotes the Gamma function and n is the local logÐlog slope
of the source function de_ned by either n 0 −d log E:d log t or n 0 d log E	:d log s[ It is easily
shown\ by using "0#\ that "2# is exact for all t × 9 if E"t# ½ t−n and n is constant[ When the moduli
in "1# and "2# are replaced by compliances\ denoted by D|s\ one may obtain analogous relationships
between the creep compliance D"t# and the operational compliance D	 "s#[

Christensen "0871# proposed an approximate interconversion between the relaxation modulus
and the storage modulus E?"v# of the following form ]

E"t# 3 E?"v# =v�"1:pt# or E?"v# 3 E"t# =t�"1:pv# "3#

A similar relationship holds for compliance functions when E|s in "3# are replaced by D|s[
Staverman and Schwarzl "0844# gave the following approximate conversion from E?"v# to the

loss modulus Eý"v# ]

Eý"v# 3
p

1
dE?"v#
d ln v

"4#

The relation "4# was later modi_ed by Schwarzl and Struik "0856# by including an additional
higher!order term which requires a triple derivative of E?"v# with respect to d ln v[

Finally\ Booij and Thoone "0871# proposed the following conversion from Eý"v# to E?"v# ]

E?"v# 3 Ee−
pv

1
dðEý"v#:vŁ

d ln v
"5#

which may be rewritten as

E?"v# 3 Ee¦
p

1 00−
d ln Eý

d ln v 1Eý"v# "6#

where Ee is the equilibrium "or rubbery# modulus[ Relations "4#Ð"6# also apply to compliances
when E? and Eý are replaced by D? and −Dý\ respectively[

2[ Motivation and theoretical basis for the new method

Many of the approximate interconversion methods are based on di}erent kinds of simpli_cations
made in their original exact mathematical interrelationships[ These simpli_cations are associated
with the unique nature of the weight function involved in each interrelationship[ From the theory
of viscoelasticity\ the following exact relations between two material functions may be obtained
"e[g[\ Tschoegl\ 0878# ]
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E"t# �
1
p g

�

9

E?"v#
sin vt

v
dv "7#

E"t# � Ee¦
1
p g

�

9

Eý"v#
cos vt

v
dv "8#

E?"v# � Ee¦
1v1

p g
�

9

Eý"l#
0

l"v1−l1#
dl "09#

Eý"v# �
1v

p g
�

9

ðE?"l#−EeŁ
0

l1−v1
dl "00#

Equations "09# and "00# are known as KronigÐKramers relations ^ the integrals are to be interpreted
as Cauchy principal values[ The Carson transforms of "7# and "8# are\

E	"s# �
1s
p g

�

9

E?"v#
0

s1¦v1
dv "01#

E	"s# � Ee¦
1s1

p g
�

9

Eý"v#
0

v"s1¦v1#
dv "02#

Interconversion methods "1# and "2# are based on the speci_c narrow band character of the
factor "st e−st# involved in "0# when a logarithmic time scale is used in the integral[ Speci_cally\
Schapery "0851# discussed the relationship between a viscoelastic transient function c"t# and its
corresponding Carson transform scÞ[ He derived the following relationship between this transform
and the transient function with logarithmic independent variables ]

f¼"u# � g
�

−�

`"w# f"w−u# dw "03#

where f¼"u# 0 scÞ"s#\ f "v# 0 c"t#\ cÞ"s# 0 g
�

9

c"t# e−st dt\ `"w# 0"ln 09# 09w exp"−09w#\ u 0 log s\

v 0 log t\ w � u¦v\ and\ as noted earlier\ log 0 log09[ The weight function `"w# is small outside of
a roughly two!decade range −0[14 ¾ w ¾ 9[64 centered at the centroid wc 0 log"e−C# 3 −9[14\
as illustrated in Fig[ 0[ In other words\ the value of a Carson transform at a particular s!value is
dictated primarily by the variation of the corresponding transient function within the t!range of
−log s−0 ³ log"t:a# ³ −log s¦0\ where a � e−C 3 9[45[ If the weight function is replaced by a
Dirac delta function d"w−wc#\ an approximate inversion formula\ f"wc−u# 3 f¼"u#\ is obtained ^
equivalently\ c"t# 3 scÞ"s# =s�"a:t# in terms of the original functions[ This result is easily shown to be
exact when scÞ is linear in log s for all s × 9[ In view of the narrow!band character of the weight
function\ the relationship will be a good approximation for a function c"t# that can be approxi!
mated on a logarithmic time scale by piecewise straight lines that are two decades wide[ An
improved approximation that accounts for curvature was given later by Schapery "0863#[ Equation
"2# follows from a similar argument if c ½ tn and n is a slowly varying function of log t[ Schapery
"0851# also observed that integrals like that in "01# may be approximated in a similar fashion "if n
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Fig[ 0[ The weight functions `"w# and h"w# used in "03# and "19#[

is not close to −0# because they too can be expressed in terms of a narrow band weight function\
designated by h"w# in Fig[ 0[

In deriving "3#\ Christensen "0871# used an approximation of the weight function\ "sin vt#:v\ in
"7# by replacing it with "p:1#d"v−v9# where d"=# is the Dirac delta function[ The parameter w9

was determined by assuming that E?"v# is a linear function of v in the neighborhood of v9\

and v9 � 1:"pt# resulted[ The de_nite integral g
�

9

"sin h:h# dh � p:1 was used to determine the

normalizing factor p:1[
Here we shall expand on these ideas in developing some new approximations\ placing emphasis

on material functions of the power law type\ tn or vn\ where n is a slowly varying function of log t
or log v and is in the range of −0 ³ n ³ 0 ^ this latter restriction assures convergence of the
relevant integrals and covers almost all cases of practical interest[

First\ let us write the relaxation modulus in the form

E"t# � En 0
t
tn1

−n

ð0¦F"t#Ł "04#

where En 0 E"tn#[ Note that F 0 9 for a pure power law representation[ The function F accounts
for an arbitrary departure from a power law ^ the time tn is the time at which the negative of the
slope\ n 0 −d log E:d log t\ is evaluated[ Considering the de_nition of En and n\ it follows from
"04# that

F"tn# �
dF
dt

"tn# � 9 "05#

The Carson transform of "04# is
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E	"s# � EnG"0−n#"stn#n ð0¦cnŁ "06#

where

cn 0 s0−n g
�

−�

Ft0−n e−st d"ln t#:G"0−n# "07#

is the relative correction due to the departure from a pure power law[ If cn is neglected "as motivated
by the narrow band character of the weight function in Fig[ 0#\ and we choose tn � 0:s\ then "06#
may be written in the form\

E	"s# � G"0−n#E"t# with t � 0:s "08#

which is equivalent to "2# if n is constant[ Both "2# and "08# produce essentially the same results
when n varies slowly ^ here we choose to use form "08# because of its greater simplicity\ especially
when two conversion steps are used\ as discussed below[

A better choice for tn is a value that minimizes the correction cn\ given s[ As shown in Appendix
B\ this choice depends on the value of n at the initially unknown time tn[ The value of log"stn# for
the optimum tn is estimated to be only a fraction of a decade in most cases "i[e[\ when n ¾ 9[4#\
and the result depends on the initially unknown value of n[ Motivated by these facts\ we shall use
log"stn# � 9 as implied by "08#\ although it is recognized that an iterative process could be used to
reduce the error in "08# through a better choice of tn[ In the example of PMMA given later\ n ¾ 9[3[

The Carson transform E	 in terms of E? is given in "01#[ This integral may be approximated using
arguments similar to those leading to "08#[ The counterpart to "03# is

f¼"u# � g
�

−�

h"w# f"w¦u# dw "19#

where f¼ and u are as before ^ but here f"v# 0 E?"v#\ v 0 log v\ w 0 v−u � log"v:s#\ and the weight
function h"w# is

h"w# 0
1
p

ln 09

"09−w¦09w#
"10#

This function is plotted in Fig[ 0[ As may be observed\ it is symmetric with respect to w � 9\ and
is small outside a roughly two!decade range[ Let us use a representation for E? which is analogous
to that in "04#\

E?"v# � E?n 0
v

vn1
n

$0¦F? 0
v

vn1% "11#

where E?n 0 E?"vn# and n 0 d log E?:d log v[ Neglecting the contribution of F? to the integral\
together with selecting vn � s\ we _nd

E	"s# �
E?"v#

cos"np:1#
with v � s "12#
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An improved choice of vn is given in Appendix B but\ as before\ it does not di}er much from s on
a logarithmic scale when n ¾ 9[4[

Equations "08# and "12# may be used to eliminate E	\ so that

E?"v# � G"0−n# cos 0
np

1 1E"t# with t � 0:v "13#

Observe that it has been assumed n in "08# is essentially the same as n in "12#[ This assumption
depends on n varying slowly with log t or log v\ and is con_rmed by the examples given later[

Considering next the Carson transform in terms of Eý\ "02#\ it is seen that "E	−Ee#:s in terms of
Eý:v is analogous to "01#[ Equation "A3# in Appendix A shows that Eý:v is a monotone\ decreasing
function of v[ However\ the magnitude of the logÐlog slope approaches two at high frequencies
ðcf "A3#Ł\ which is far greater than that for E? ^ in fact\ for a pure power law "Eý:v# ½ v−1\ and
the integral "02# does not converge[ Moreover\ as shown in Appendix B\ the optimum point of
evaluation for vn is not close to s at intermediate frequencies near the point where the slope of Eý
vanishes[

Nevertheless\ let us use "02# while recognizing the resulting approximations will be good over
only a limited frequency range[ Results like "12# and "13# are found\ but with the changes E? :
Eý\ E	 : E	−Ee and cos : sin[ By combining these results\ we _nd

Eý"v# � tan 0
np

1 1 ðE?"v#−EeŁ "14#

where the local slope is now

n 0
d log ðE?"v#−EeŁ

d log v
"15#

Clearly\ when n − 0\ this result is not valid[ Note from "A2# that n : 1 as v : 9\ showing that
"14# will not be valid at very low frequencies[

As an alternative approach\ we may use a modi_ed form of "00#\

Eý"v# �
1v

p g
�

9

E?"l#
0

l1−v1
dl "16#

which also has a narrow band weight function[ This form is obtained by recognizing that the part
of the integral "00# involving Ee vanishes[ As before\ use "11# but neglect F? ^ then

Eý"v# � tan 0
np

1 1E?"v# "17#

where now

n 0
d log E?"v#

d log v
"18#

We may use the low frequency behavior of E? in "A2# to check the validity of "17# as v : 9[ It is
found that the result is di}erent from the limit derived using "A3#\ and thus neither "14# nor "17#
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are valid for this case[ Similarly\ we _nd that "14# and "17# do not predict the correct limiting
behavior for v : �[ However\ simple\ exact expressions may be derived from "00# for the low
and high frequency limits[ Speci_cally\ we _nd

Eý"v# : c0v as v : 9 "29#

and

Eý"v# :
c1

v
as v : � "20#

where

c0 0
1
p g

�

9

ðE?"l#−EeŁ
dl

l1
"21#

and

c1 0
1
p g

�

9

ðEg−E?"l#Ł dl "22#

where Eg is the glassy modulus[ The result "22# was obtained from "00# by adding EeÐEg to the
integrand ^ this step of adding a constant has no e}ect on the integral\ but is needed to achieve
convergence when v : �[ Equations "20#Ð"22# may be used with experimental data to complete
the prediction of Eý when combined with "14# or "17#\ as illustrated later[ If the Prony series
constants are available\ "A3# may be used to obtain c0 and c1 more simply\

c0 � s
m

i�0

riEi\ c1 � s
m

i�0

Ei:ri "23#

Simple asymptotic results for other functions could be easily derived for use when the approximate
interrelationships breakdown\ but the ones recorded here are the only ones needed in the subsequent
discussion[

3[ New approximate interconversion method

Equations "08#\ "12# and "17# may be combined and rearranged to summarize the set of
approximate interconversions ]

E	"s# 3 l½E"t# =t�"0:s# or E"t# 3
0
l½

E	"s# =s�"0:t# "24#

E?"v# 3 l?E"t# =t�"0:v# or E"t# 3
0
l?

E?"v# =v�"0:t# "25#

Eý"v# 3 lýE"t# =t�"0:v# or E"t# 3
0
lý

Eý"v# =v�"0:t# "26#
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E?"v# 3 l¼E	"s# =s�v or E	"s# 3
0
l¼

E?"v# =v�s "27#

Eý"v# 3 l¹E	"s# =s�v or E	"s# 3
0
lÞ

Eý"v# =v�s "28#

Eý"v# 3 l�E?"v¼ # =v¼ �v or E?"w# 3
0
l�

Eý"v¼ # =v¼ �v "39#

where the adjustment factors\ l½\ l?\ lý\ l¼\ l¹ and l� are given in Table 0 as functions of n[ Relations
"24#Ð"39# are exact when the material functions are described by pure power laws ^ however\ these
are shown as approximate relationships allowing for behavior which does not exactly obey a power
law over 9 ³ t\ s\ v ³ �[ One should interpret n as the local\ logÐlog slope of the source function
at the speci_ed position[ For instance\ for the case of "24#\ n � −d log E"t#:d log t at t � 0:s when
E"t# is the source function\ and n � d log E	"s#:d log s at s � 0:t when E	"s# is the source function[

It should be stressed that the equations with Eý as the source function have a limited range of
validity\ but are given here for completeness[ Also\ we have assumed that the n!value may be taken
as the logÐlog slope of the source function\ regardless of which function was used in the original
development of the equation ^ e[g[\ E"t# is the source function in "08#\ but E	"s# is the source function
in the second part of "24#[ This procedure is valid for a slowly varying slope[

Consider now a power!law creep compliance\

D"t# � D0t
n "30#

Relations similar to "04#Ð"39# hold for compliance functions when appropriate changes of par!
ameters are made ^ i[e[\ E0 : D0\ n : −n\ E	 : D	\ E? : D?\ and Eý : −Dý[ It should be noted that
the sign change in Eýt−Dý requires that the sign of n be used because the argument of the
trigonometric functions that appear in the l!function de_nitions should not change when modulus
and compliance are interchanged[

The adjustment functions\ l|s\ de_ned in Table 0\ are plotted in Fig[ 1"a# and 1"b# for
−0 ³ n ³ 0[ The l!curves in Fig[ 1"a# are not symmetric about the n � 9 axis because of the
change in sign of n in the gamma function ^ thus\ the _rst three l|s in Table 0 required for a

Table 0
Adjustment functions used in new approximate inter!
conversion method

Ratios Adjustment functions

l½ � E	"s#:E"t# l½ � G"0−n#
l? �E?"v#:E"t# l? �G"0−n# cos"np:1#
lý � Eý"v#:E"t# lý � G"0−n# sin"np:1#
l¼ � E?"v#:E	"s# l¼ � cos"np:1#
l¹ � Eý"v#:E	"s# l¹ � sin"np:1#
l� �Eý"v#:E?"v# l� � tan"np:1#
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Fig[ 1[ Graphical representation of adjustment functions[ "a# l½ "n#\ l?"n# and lý"n#[ "b# l¼ "n#\ l¹ "n# and l�"n#[
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compliance interconversion di}ers from that required for the corresponding modulus inter!
conversion for the same "absolute# value of n[

It is of interest to apply "24# to both the modulus and compliance functions and use the exact
relationship\ E	"s#D	 "s# � 0[ Assuming\ as before\ a local power law behavior\ this process yields
Ferry|s "0869# equation\

E"t#D"t# � G"0−n#G"0¦n# �
sin np

np
"31#

where n is again the local logÐlog slope[ This equation has been found to be very accurate for
broadband functions\ as reported by Ferry "0869# and as we have found in our unpublished
studies ^ the theory in the previous section shows why it works so well[

Finally\ for viscoelastic solids we note that the nonzero equilibrium modulus Ee must be explicitly
added to the far right!hand sides of "26#\ "28# and "39# to obtain good results as t : � and s\ v :
9 if Eý is the source function[ This is certainly clear because Eý is independent of Ee[ More generally\
the exact interrelationships "8#\ "09#\ and "02# show that Ee is to be added to the integrals containing
Eý[ Figure 2 demonstrates that the behavior of E?−Ee is much closer to Eý than E? is at low
frequencies[ Similar behavior exists when E? is replaced by E or E	[ Consequently\ in lieu of "26#\
"28# and "39#\ the following improved interconversions may be used for viscoelastic solids ]

Eý"v# 3 lýðE"t#−EeŁ =t�"0:v# or E"t# 3 Ee¦
0
lý

Eý"v# =v�"0:t# "32#

Eý"v# 3 l¹ ðE	"s#−EeŁ =s�v or E	"s# 3 Ee¦
0
l¹

Eý"v# =v�s "33#

Fig[ 2[ Comparison of behavior of E?"v#\ E?"v#−Ee and Eý"v# for PMMA[
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Eý"v# 3 l�ðE?"v¼ #−EeŁ =v¼ �v or E?"v# 3 Ee¦
0
l�

Eý"v¼ # =v¼ �v "34#

where the adjustment factors lý\ l¹ and l� are as de_ned above as functions of n ^ however\ the
logÐlog slope n in these cases is de_ned as d log Eý:d log v when Eý is the source function\ or as
−d log"E−Ee#:log\ t\ d log"E	−Ee#:log s or d log"E?−Ee#:log v when E\ E	 or E? are the source
functions\ respectively[ Equations "32#Ð"34# are easily shown to be exact when n is constant[

As mentioned above\ the modi_ed eqns "32#Ð"34# must be used to obtain E\ E	 or E? from Eý
when t : � or s\ v : 9[ However\ when Eý is to be predicted\ the modi_ed equations are found\
by a study of examples\ to o}er only a small improvement over "26#\ "28# and "39#[

4[ Numerical examples

We shall now illustrate the approximate interconversion method described above for PMMA
material functions[ The constants in the Prony series representation "A0# of the relaxation modulus
of PMMA provide what we call exact representations of the material functions in "A0#Ð"A3#[
These constants are the same as used in the companion paper "Park and Schapery\ 0887#[ Of
course\ it is not implied that these are exact representations of experimental data ^ however\ for a
given set of constants\ they are exact and thus provide a means for checking the accuracy of the
approximate interrelationships in this paper[

First\ let us consider conversions of E	"s#\ E?"v# and Eý"v# into E"t# ^ the _rst three functions
come from "A1#Ð"A3#[ All the methods discussed above were tested and the results are plotted in
Fig[ 3"a#[ Many of the results are so close to each other that they are not easily distinguishable
graphically[ For an e}ective comparison of the accuracy of each method\ the logarithmic deviation
of each curve from the exact one\ log"E:Eexact#\ is plotted in Fig[ 3"b#[

It is seen that the methods employed produce good results in most cases[ The conversion from
Eý by means of "32# is good up to the value of t � 0:v where the logÐlog slope of Eý begins to
decrease noticeably with increasing v "cf Fig[ 2#[ For negative n values\ the parameter lý is negative\
which is physically unrealistic ^ thus\ "32# fails as this unrealistic limit is approached[ Recall that
the n!values used here are all obtained from the logÐlog slope of the source function evaluated at
s � l:t or v � l:t[

Additional improvement in accuracy is achieved when optimum values of n\ evaluated at s � a:t
or v � b:t where a and b are functions of n as discussed in Appendix B\ are employed[ Maximum
improvement is observed in the regions of highest curvature[ For example\ the maximum error of
7[5) "log E:Eexact � 9[925# in the E	"s# : E"t# conversion at around t � 0E¦95 s ðFig[ 3\ predicted
by eqn "24#Ł reduces to 3[0) "log E:Eexact � 9[906# when the n value is evaluated from E	"s# at
s � 9[205:t[ It is to be noted that this additional accuracy is obtained at the expense of an extra
e}ort of locating the optimum n!value evaluation positions[

Conversions of D	 "s#\ D?"v# and Dý"v# to D"t# for PMMA were also carried out in a similar
manner[ Even though the results are not included in this paper because of space limitation\ similar
_ndings were observed[ It is to be recalled\ however\ that the l!functions as shown in Fig[ 1 are
not symmetric about the n � 9 axis and therefore the performance of each equation discussed
above is slightly di}erent when applied to compliance functions compared to modulus functions[
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Fig[ 3[ The relaxation modulus E"t# converted from E	"s#\ E?"v# and Eý"v#[ "a# Graphical representation on logÐlog
scales[ "b# Logarithmic deviations from the exact solution[

For a similar reason\ it was observed that "1# works better than "3# in a compliance interconversion\
while the opposite is true in a modulus interconversion[

Next\ conversions from E\ E? and Eý to E	 were tested ^ like before\ the _rst three come from
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Fig[ 4[ The operational modulus E	"s# converted from E"t#\ E?"v# and Eý"v#[ "a# Graphical representation on logÐlog
scales[ "b# Logarithmic deviations from the exact solution[

"A0#\ "A1# and "A3#[ The results are shown in Fig[ 4"a# and "b#[ Again\ Fig[ 4"b# is provided to
show the di}erences among the methods more e}ectively[ Overall\ the degree of accuracy and the
characteristics of performance are about the same as for the previous case[ All the new proposed
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equations work well[ Again\ the conversion of Eý to E	 worked only up to where the logÐlog slope
of Eý begins to decrease noticeably with increasing frequency[

Conversions from E\ E	 and Eý to E? were also conducted and the results are presented in Fig[
5"a# and "b#[ Similar performance is observed as in the two preceding cases[ The method proposed
by Booij and Thoone "0871# using "6# was also considered ^ it shows a trend similar to that of "34#\
even though its accuracy is less at intermediate frequencies[

Finally\ conversions from E\ E	 and E? to Eý were carried out and the results are shown in Fig[
6"a# and "b#[ Also shown are the asymptotic predictions using "29# and "20#[ The new method
yields good results within the mid!range of the frequency[ In the low and high frequency regions
"corresponding to the rubbery and glassy plateau zones#\ the accuracy decreases ^ the behaviors of
adjustment functions lý\ l¹ and l� shown in Fig[ 1 indicate that as n grows or approaches zero
these functions correspondingly grow rapidly "except l¹# or approach zero thus resulting in poor
predictions[ Conversions for v ³ 0[E!7 were not used because n|s approached or exceeded unity[
However\ the di.culties in the low and high frequency regions can be mitigated by using the
asymptotic formulas "29# and "20#[ It is seen that fairly good predictions can be obtained over
the entire frequency range\ 9 ³ v ³ �\ by blending the approximate predictions into the exact
asymptotic lines[

The existing conversion from E? to Eý in "4#\ proposed by Staverman and Schwarzl "0844# was
also employed and turned out to produce results comparable to those by the new method\ as given
by "34#[ It is noteworthy that "4# and "6# can be rewritten\ respectively\ in terms of the logÐlog
slope n\

Eý"v# 3
np

1
ðE?"v¼ #−EeŁ =v¼ �v "35#

E?"v# 3 Ee¦
"0−n#p

1
Eý"v¼ # =v¼ �v "36#

where n 0 d log"E?−Ee#:d log v � d ln"E?−Ee#:d ln v or n 0 d log Eý:d log v\ depending on the
source function[ The constant Ee "equilibrium modulus# has been included in "35# as a free
integration constant so that "35# can be directly compared with "34#[ It is seen that l� and 0:l�
correspond\ respectively\ to the simple linear functions np:1 and "0−n#p:1 ^ their overall behavior
agree qualitatively[ When Eý obeys a pure power law\ the relations in "34# are exact\ regardless of
n\ while "35# and "36# are not exact[ It should be mentioned that 9 ¾ n ³ 9[3 for all PMMA
functions\ except for Eý[ Thus\ replacement of tan"np:1# by "np:1#\ as implied by "35#\ is only a
crude approximation in the frequency range for which n is not small[

5[ Further discussion

Through the preceding examples for PMMA\ we have seen that the new interconversion method
improves results over the existing methods without adding any procedural complexity[ However\
in order to check the validity and accuracy of the method for uncommon cases of narrow!band
material functions\ two additional tests have been conducted[

As the _rst case\ an arti_cial relaxation modulus E"t# simulating that of the foregoing PMMA\
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Fig[ 5[ The storage modulus E?"v# converted from E"t#\ E	"s# and Eý"v#[ "a# Graphical representation on logÐlog scales[
"b# Logarithmic deviations from the exact solution[

but using a 4!term "m � 4# Prony series representation "with relaxation times\ ri � 09"i−0# ^
i � 0\ [ [ [ \ 4#\ was considered "Fig[ 7#[ Our original E"t# for PMMA was represented by an 00!term
Prony series in our companion paper "Park and Schapery\ 0887#[ A comparison of Figs 3"a# and
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Fig[ 6[ The loss modulus Eý"v# converted from E"t#\ E	"s# and E?"v#[ "a# Graphical representation on logÐlog scales[ "b#
Logarithmic deviations from the exact solution[

7 indicates that the glassy and the equilibrium moduli were left unchanged but\ as shown in Figs
3"a# and 7\ the slope of the curves in the transition zone are quite di}erent and the curvature near
the toe of the m � 4 curve is larger than that for m � 00[ Equations "24# for E	 and "25# for E?
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Fig[ 7[ The relaxation modulus E"t# converted from E	"s# and E?"v# when the source functions are represented by a 4!
term Prony series[

were applied using the new exact representations of E	 and E?[ The result from "24# shows some
deviations from the new exact E"t# in "A0# with m � 4\ especially around the toe zone\ but "25#
still gives a good prediction of E"t#[ The di}erence between E? and E	 becomes more pronounced
as the number of Prony series terms decreases in the representation of E"t#[

As the second case\ an extreme case of one!term "N � 0# Prony series representation was
considered\ again maintaining the same glassy and the equilibrium moduli of the PMMA "Fig[ 8#[
The slope of the curve within the transition zone and the curvature at the toe are extremely high[
It turned out that "25# fails over part of the time range in this case because of the excessive logÐ
log slope of the source curve "n × 0#[ Method "24# was found to be qualitatively good because the
logÐlog slope of the source functions stays within the allowable range "9¾ n ³ 0# ^ however\ the
accuracy was not good[

With these additional examples\ we have shown that the proposed method leads to poor results
when the source and target functions exhibit large curvature on logÐlog coordinates[ This is not
surprising since\ in this case\ n is not a slowly varying function of logarithmic values of t\ v or s[

6[ Conclusions

A new analytical method of approximate interconversion of linear viscoelastic material functions
and approximate Laplace transformation and inversion " for these and other functions# was
introduced and its performance checked successfully using viscoelastic functions for PMMA[ The
method employs variable adjustment factors "or vertical shift factors on a logarithmic scale#
dictated by the slope of the source function on a doubly!logarithmic scale[
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Fig[ 8[ The relaxation modulus E"t# converted from E	"s# and E?"v# when the source functions are represented by a 0!
term Prony series[

Some available existing methods were reviewed and their performance compared with that of
the new method[ The existing methods exhibited varying degrees of success\ but the new method
has been shown to yield improved results over the existing methods[ The theoretical basis\ in terms
of the mathematical properties of the weight functions involved in the exact interrelationships\ was
discussed and explains the improvement that has been observed in the new method[

Even though the method is illustrated in this paper through the interconversion of modulus
functions\ the method is equally applicable to the interconversion of compliance functions[ It has
the same theoretical basis as that for the modulus functions[

Appendix A ] representation of modulus functions based on the Prony series

Relaxation modulus "Prony series# ]

E"t# � Ee¦ s
m

i�0

Ei e
−t:ri "A0#

Operational modulus ]

E	"s# � Ee¦ s
m

i�0

sriEi

sri¦0
"A1#

Storage modulus ]
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E?"v# � Ee¦ s
m

i�0

v1r1
i Ei

v1r1
i ¦0

"A2#

Loss modulus ]

Eý"v# � s
m

i�0

vriEi

v1r1
i ¦0

"A3#

where Ee\ Ei and ri are constants[ According to linear thermodynamics for stable systems obeying
Onsager|s principle "Biot\ 0843#\ all linear viscoelastic materials can be described with these forms
and all of the constants are positive when the modulus is the ratio of stress to its work!conjugate
strain[ When considering the general case of the modulus tensor for isotropic and anisotropic
media\ each coe.cient in "A0# is replaced by a positiveÐde_nite matrix[

Appendix B ] determination of optimum location for slope evaluation

The approximate method described in the body of this paper uses the local logÐlog slope of the
relevant material functions[ Referring to "0#\ "01# and "02#\ the problem posed here is to determine
the time or frequency at which the slope should be evaluated to minimize the error in evaluating
each integral[

Let us consider _rst the operational modulus\ or the Carson transform of the relaxation modulus\
"0#[ For a given value of s\ the optimum location depends on how the relaxation modulus varies
relative to a pure power law[ Speci_cally\ suppose for a given s that over the range for which the
weight function is not essentially zero we use a special case of "04#\

E"t# � En 0
t
tn1

−n

$0¦k6log 0
t
tn17

1

% "B0#

where k is a constant for a given tn[ Then\

log E"t# � log En−n log 0
t
tn1¦log $0¦k 6log 0

t
tn17

1

% "B1#

If\ over the band width of the weight function\ the departure from a power law is small\ then the
last term in "B1# is approximately k"log t−log tn#1[ The di}erence between a tangent line at tn and
the actual function log E is thus a quadratic in log t\ implying constant curvature in logarithmic
coordinates[ More generally\ except at an in~ection point "where the error is certainly small#\ "B0#
provides a simple\ apparently realistic correction to a power law over the signi_cant band width
of the weight function[

With F from "B0#\ the correction cn in "07# is minimized with respect to tn to _nd

g
�

9

e−stt−n"log t−log tn# dt � 9 "B2#

so that
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log tn � g
�

9

e−stt−n log t dt>g
�

9

e−stt−n dt "B3#

ðThe assumed weak dependence of n on tn has been neglected in arriving at "B2#[Ł When "B3# is
expressed in terms of log t as the integration variable\ it may be seen that log tn is placed at the
centroid of the function e−stt0−n[ For 9 ³ n ³ 0\ this location is to the left of the centroid of `"w#
in Fig[ 0 "which is for the function e−stt#[ Equation "B3# simpli_es to

log"stn# � I0

log e
G"0−n#

"B4#

where I0 is the integral

I0 0 g
�

9

e−uu−n ln u du "B5#

which may be evaluated analytically "Gradshteyn and Ryzhik\ 0854#[ For a few values of n we
_nd

n � 9\ log"stn# 3 −9[14

n � 9[14\ log"stn# 3 −9[36

n � 9[4\ log"stn# 3 −9[74

n � 9[64\ log"stn# 3 −0[71 "B6#

Since n is not initially given\ an iteration procedure is needed if the resulting slope is not close to
the original estimate[ The departure from a power law is usually greatest when n is much smaller
than 9[4 "at short and long times#\ and therefore the optimum value of log"stn# is small in the
regions of high curvature[ For example\ if n � 9[14 then the optimum location is less than one!
half decade to the left of what was used in the body of the paper\ log"stn# � 9[ When n ³ 9 " for
creep compliance#\ the optimum "centroid# location is even closer to the log"stn# � 9 ^ for the
extreme case of n � −0\ we _nd log"stn# 3 9[07[

A similar approach may be used in evaluating E	 from E? and Eý[ Speci_cally\ use a form of E?
like that for E in "B0#\ but with t:tn replaced by v:vn and −n by n[ The optimum location is given
by\

log"vn:s# � g
�

9

zn log z dz

0¦z1 >g
�

9

zn dz

0¦z1
"B7#

The integrals converge for −0 ³ n ³ 0\ and may be analytically integrated to _nd

log"vn:s# �
p

1
"log e# tan

np

1
¹ 9[571 tan

np

1
"B8#

For example\
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n � 9\ log"vn:s# � 9

n � 9[14\ log"vn:s# 3 9[17

n � 9[4\ log"vn:s# 3 9[57

n � 9[64\ log"vn:s# 3 0[54 "B09#

It is seen that the values are somewhat smaller in magnitude than those in "B6# for the relaxation
modulus[ Thus\ the optimum slope evaluation point is at or to the right of the point used in the
body of the paper\ log"vn:s# � 9[

For Eý\ we represent Eý:v in the form of "B0# but with t:tn replaced by v:vn and n by q\

q 0 −
d log"Eý:v#

d log v
� 0−

d log Eý

d log v
"B00#

which is always non!negative[ Then\ use "B8# after replacing n by −q[ Thus\

log"vn:s# 3 −9[571 tan
qp

1
"B01#

In this case\ log"vn:s# ³ 9 and it is unbounded at an intermediate frequency where Eý exhibits a
maximum with respect to frequency[
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